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ABSTRACT1
Parks provide important benefits to those who live near them, in the form of improved property2
values, health outcomes, etc.; nevertheless, measuring and understanding who lives near a park3
is an open research question. In particular, it is not well understood which park individuals will4
choose to use when given a choice among a set of nearby parks of varying sizes and at varying5
distances from their home. In this paper we present a park activity location choice model estimated6
from a passive origin-destination dataset — supplied by StreetLight Data, Inc. — representing7
trips to parks and green spaces in Alameda County, California. The estimated model parameters8
reveal heterogeneous preferences for park size and willingness-to-travel across block-group level9
socioeconomic segmentation: Specifically, high-income block groups appear more positively10
attracted to larger parks, and block groups with a high proportion of ethnic minority individuals are11
more likely to select nearby parks. The findings have importance for understanding recreational12
access among different populations, and the methodology more generally supplies a potential13
template for using passive data products within travel modeling.14
Keywords: park access, destination choice, passive data15
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INTRODUCTION1
Parks and other green spaces generate immense value for the public who are able to access them.2
The City Parks Alliance (2019) categorizes the observed benefits of urban parks as encouraging3
active lifestyles (Bancroft et al., 2015), contributing to local economies, aiding in stormwater4
management and flood mitigation, improving local air quality, increasing community engagement5
(Madzia et al., 2018), and enhancing public equity.6

Nevertheless, understanding and quantifying these benefits depends in many cases on7
identifying who lives near the parks and is therefore able to access them. Many previous studies8
(e.g., Richardson et al., 2012) rely on comparison of total greenspace across metropolitan areas;9
this methodology may not adequately control for city-level fixed effects and it may ignore the10
potentially inequitable distribution of park space within a region. Metropolitan-level efforts typically11
assume that people living within a certain distance or travel time threshold have access to a park, or12
examine the quantity of park space within one’s own arbitrarily defined “neighborhood” (Mitchell13
and Popham, 2008; Stark et al., 2014). But these methods do not account for the fact that some14
people will travel to other parks to perform recreational activities. A more holistic measure that15
continuously measures access across multiple preference dimensions is desirable.16

An appealing solution would be to examine and model the activity location choices of park17
users. Such a model would help researchers understand how individuals of different backgrounds18
and preferences value different park amenities. Further, the logsums of a location choice model19
provide a continuous measure of accessibility that explicitly accounts for such variation (de Jong20
et al., 2007). Unfortunately, park choice models of this form are rare in the literature. Travel demand21
models built for infrastructure forecasting are a common way to generate such accessibility logsums,22
but these models group many different kinds of social and recreational trips together (National23
Academies of Sciences Engineering and Medicine, 2012). Further, the attraction term for such trip24
purposes is commonly a function of the retail or service employment or the number of households25
at the destination; a typical park or green space has neither employees nor residents. Finally, many26
regional household travel surveys are oriented towards an average weekday travel pattern, and many27
park trips occur irregularly or on weekends.28

In this paper we present a park destination choice model where individuals living in Alameda29
County, California choose among parks in the same county. The individuals are constructed from30
passive data that was derived from mobile devices and processed using algorithms developed by31
StreetLight Data, Inc. The origin location points are inferred residence block groups for unique32
devices and the destination points are geofenced polygons representing green and open spaces. The33
individuals’ choice of park location is conditioned on the distance from the block group to the parks34
in the choice set as well as the size of each park; market segmentation allows for heterogeneous35
responses between ethnic groups and income strata.36

The paper proceeds in the following manner: A discussion of prior attempts to study park37
choice and employ passive origin-destination data in the literature is given directly. The Method-38
ology section presents the data gathering and cleaning efforts as well as the econometric location39
choice model. The Results section presents the estimated model coefficients and a discussion of40
the findings, as well as a model validation exercise. After presenting limitations and associated41
avenues for future research, a final Conclusions section outlines the contributions of this study for42
recreational trip modeling and location choice modeling more generally.43
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LITERATURE REVIEW1
Understanding who has access to parks is a long-standing question across multiple scientific2
disciplines. Researchers specializing in recreation management, public health, urban planning,3
ecology, and civil engineering have all played a role in shaping our collective understanding of park4
design, access, and use. A complete review of all of these fields is not warranted for the scope of5
this paper, but some recent findings are worth discussion.6

A popular measure of park accessibility is the Trust for Public Land’s “ParkScore” statistic7
(2019). ParkScore considers the share of the population that resides within a 10-minute walk of8
a green space using a sophisticated network routing algorithm, in combination with the total city9
green space, investment, and amenities weighted against the socioeconomic characteristics of the10
population outside of the 10-minute walk threshold. The resulting score is a convenient quantitative11
tool in estimating the relative quality of green space access across cities (Rigolon et al., 2018). It12
may be less useful at identifying the comparative quality of access within a city, particularly as13
more than 95% of residents in many large metropolitan areas like San Francisco and New York14
live within the binary 10-minute walk threshold. The Centers for Disease Control and Prevention15
(CDC) has developed an “Accessibility to Parks Indicator” along similar lines (Ussery et al., 2016),16
calculating the share of the population living within a half-mile of a park for each county in the U.S.17

There is recognition that park access should in some way be linked with park use. After18
all, a park that has many visitors must by definition be accessible to those visitors. McCormack19
et al. (2010) provide a comprehensive review of this literature; it is sufficient here to note that most20
studies find a complicated interplay between park size, maintenance, facilities, and travel distance.21
Many of these attributes are incorporated into ParkIndex (Kaczynski et al., 2016), which estimates22
the resident park use potential within 100m2 grid cells, based on a household park use survey in23
Kansas City.24

From a transportation engineering perspective, the park use potential measured by ParkIndex25
is not dissimilar from a park trip production potential. Along these lines, the question of park use is a26
destination choice problem, where trip makers consider which park is most attractive to accomplish27
their recreation activity. The Institute of Transportation Engineers (ITE) Trip Generation Manual28
(Institute of Transportation Engineers, 2017) contains trip attraction rates for public parks that use29
as attraction terms the park acreage, number of picnic tables, employees, and other variables. As30
with many land uses in Trip Generation, the provided trip generation rates are based on a limited31
number of observational samples (between 2 and 11) and may not represent large-sample behavior32
(Millard-Ball, 2015). Moreover, regression-based attraction rates isolated from trip production and33
travel behavior ignore the geographical and behavioral contexts in which people actually make trips34
to parks (Barnard and Brindle, 1987): Though more people may come to larger parks, a park cannot35
attract more people simply by becoming bigger.36

There are limited examples of researchers using a destination choice model to predict37
recreation attractions. Kinnell et al. (2006) apply a choice model to a survey of park visitors in New38
Jersey, and estimate the relative attractiveness of park attributes including playgrounds, picnic areas,39
and park acreage weighed against the travel disutility and the relative crime rate at the destination.40
In a similar study, (23) model the urban swimming location choice for a surveyed sample. In both41
studies, the researchers were attempting to ascertain which attributes of a recreation generated the42
most positive utility, and therefore which attributes should be prioritized for improvement. These43
studies have not to our knowledge been previously referenced in discussions of park accessibility.44

The advent of large-scale mobile networks and the seemingly perpetual association of unique45
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devices with unique users has given researchers a new opportunity to observe the movements and1
activity location patterns for large subsets of the population (Naboulsi et al., 2016). Such passively2
collected movement data — sometimes referred to as “Big Data” — is passively collected as a by-3
product of other systems including cellular call data records (e.g. Bolla and Davoli, 2000; Calabrese4
et al., 2011), probe GPS data (Huang and Levinson, 2015), and more recently Location Based5
Services (LBS) (Roll, 2019; Komanduri et al., 2017). LBS use a network of mobile applications6
that obtain the users’ physical location. A variety of commercial vendors repackage, clean, and7
scale these data to population or traffic targets and sell origin-destination matrices to researchers8
and practitioners at relatively low prices. A common application for such passive origin-destination9
matrices is in constructing or validating the trip distribution components of regional travel demand10
models (Huntsinger and Donnelly, 2014) or in constructing non-behavioral elements of such models;11
for example, Huntsinger and Ward (2015) demonstrate the use of a passive origin-destination matrix12
in an external trip model.13

Passive origin-destination matrices are beginning to inform trip distribution model de-14
velopment more directly as well. Kressner (2017) proposes one methodology, where passive15
origin-destination matrices serve as a probabilistic sampling frame for a simulated trip destination16
choice. Bernardin et al. (2018) employ a passive origin-destination matrix as a shadow price17
reference in an activity-based location choice model, iteratively adjusting the parameters of the18
choice utilities to minimize the observed error between the matrix and the modeled predictions. A19
similar method developed by Zhu and Ye (2018) uses the passive dataset directly, sampling 10,00020
random trips from GPS traces of taxi trips in Shanghai and estimating a destination choice model.21
Employing the passive data set in this way provides the authors an opportunity to both examine22
the choices of a large sample of a small population (taxi passengers) as well as sufficient data to23
estimate a “constants-rich” destination choice model with uniquely estimated coefficients for each24
origin-destination pair. The Zhu and Ye methodology suggests that a similar approach should apply25
other contexts, including park choice.26

METHODOLOGY27
We constructed a dataset on which to estimate park trip destination choices for a sample of observed28
trips in Alameda County, California. Alameda County is one of the seven counties that constitutes29
the San Francisco Bay Area metropolitan region in California. Alameda is the seventh most30
populous county in California with a population of 1.5 million (U.S. Census Bureau, 2019), and has31
14 incorporated cities and several unincorporated communities. It is an economically and ethnically32
diverse county and hence it was an attractive area to use for this study. The racial makeup of33
Alameda County was (49.7%) White, (11.2%) African American, (1.0%) Native American, (38.7%)34
Asian, (1.0%) Pacific Islander, and (22.4% Hispanic or Latino (of any race). Alameda County has a35
diverse set of parks, ranging from local small community parks, urban and transit-accessible parks36
like the Lake Merritt Recreational area, accessible coastal access, and suburban recreational areas37
like Lake Chabot.38

Data39
We constructed an analysis dataset from a publicly-available parks polygons layer, a commercially40
acquired passive device origin-destination table representing trips between the parks and home41
block groups, and American Community Survey data for the home block groups.42

We obtained a polygons shapefile layer representing open spaces in Alameda County,43
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TABLE 1 Descriptive Statistics of Study Block Groups
Park Type N Median Acres (IQR) Total Visits

Local Park 441 3.89 (1.31, 9.81) 639,463
Local Recreation Area 57 9.27 (3.58, 53.79) 156,720
State Recreation Area 2 421.05 (325.00, 517.09) 161

California from the California Protected Areas Database (GreenInfo Network, 2019). This dataset1
was selected because it included multiple different types of open space including local and state2
parks, traditional green spaces as well as wildlife refuges and other facilities that can be used for3
recreation. We removed facilities that did not allow open access to the public (such as the Oakland4
Zoo) and facilities whose boundaries conflated with freeway right-of-way – this prevents trips5
through the park from being conflated with park trips in the passive origin-destination data. Table 16
shows some descriptive characteristics of the parks data.7

We provided the park boundaries layer to a commercial firm, StreetLight Data Inc., which8
develops and resells origin-destination matrices derived from passive device location data. The9
provider employs a proprietary data processing engine (called Route Science) to algorithmically10
transform observed device location data points (the provider uses in-vehicle GPS units and mobile11
device LBS) over time into contextualized, normalized, and aggregated travel patterns. From these12
travel patterns, the Route Science processing algorithms infer likely home Census block group13
locations for composite groups of people and converts raw location data points into trip origin and14
destination points (Pan et al., 2006; Friedrich et al., 2010).15

For each park polygon, the firm returned a population-weighted estimate of how many16
devices were observed by home location block group over several months in the period between17
May 2018 and October 2018. We transformed this table such that it represented the weighted18
unique devices traveling between block groups and parks. We discarded home location block groups19
outside of Alameda County; the imputed home locations can be far away from the study area for a20
small amount of trips and are unlikely to represent common or repeated park activities.21

In order to understand the demographic makeup of the home block groups and potentially the22
characteristics of the people who make each trip, we obtained 2013-2017 five-year data aggregations23
from the American Community Survey (U.S. Census Bureau, 2009) using the tidycensus (Walker,24
2019) interface to the Census API for several key demographic and built environment variables: the25
share of individuals by ethnic group, the share of households by income level, household median26
income, and the housing unit density. An important attribute of the choice model is the distance27
from the home block group to the park boundary. Because we have no information on where in28
the block group a home is actually located, we use the population-weighted block group centroid29
published by the Census Bureau as the location for all homes in the block group. We then measured30
the Euclidean distance in miles between the block group and the boundary of each park in the31
polygons layer.32

Model33
In random utility choice theory, if an individual living in block group n wishes to make a park trip,34
the probability that the individual will choose park i from the set of all parks J can be described35
as a ratio of the park’s measurable utility Vni to the sum of the utilities for all parks in the set. In36
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TABLE 2 Descriptive Statistics for Residence Block Groups
Median (IQR)

Density: Households per square kilometer 1,352.9 (880.8, 2,187.0)
Income: Median tract income 85,673.0 (58,478.0, 119,375.0)
Low Income: Share of households making less than $35k 15.1 (7.8, 26.1)
High Income: Share of households making more than $125k 30.4 (15.5, 46.5)
Black: Share of population who is black 6.8 (1.8, 18.4)

Asian: Share of population who is Asian 21.1 (10.4, 37.8)
Other: Share of population who belong to other minority groups 0.5 (0.0, 1.9)

the common destination choice framework we apply a multinomial logit model (McFadden, 1974;1
Recker and Kostyniuk, 1978),2

Pni =
exp(Vni)

∑ j∈J exp(Vn j)
(1)

where the measurable utility Vni is a linear-in-parameters function of the destination attributes. If3
the park choice can be defined solely by its size and the impedance in reaching the park from block4
group n, then the measurable utility would be5
Vni = β1 ∗ sizei +β2 ∗ impedanceni (2)
where β1,β2 are estimable coefficients giving the relative utility (or disutility) of that attribute to the6
choice maker, all else equal. It is possible to add additional amenities of the park or the journey to7
the utility equation. However, as the number of alternatives is large, it is impractical to consider8
alternative-specific constants or coefficients and therefore not possible to include attributes of the9
home block group or traveler n directly. We can, however, segment the data and estimate different10
distance and size parameters for different segments to observe heterogeneity in the utility parameters11
between different socioeconomic groups.12

The logarithm of the sum in the denominator of Equation 1 (called the logsum) provides a13
measure of the consumer surplus of the choice set (Williams, 1977),14
CSn = ln ∑

j∈J
exp(Vn j)+C (3)

where C is a constant indicating an unknown absolute value. But comparing the relative logsum15
values across choice makers, CSn−CSn−1 gives an indication of which choice maker has a more16
valuable choice set. Or, in this case of a park destination choice model, which choice maker has17
better access to parks.18

In the most typical cases, researchers estimate the utility coefficients for destination choice19
models from household travel surveys. As we have no knowledge of an appropriate survey on park20
access, we need to synthesize a suitable estimation data set. We do this by sampling n_obs random21
discrete device origin-destination pairs from the commercial passive data matrix, weighted by the22
volume of the flows. This corresponds to a 4.3% sample of all the observed device origin-destination23
pairs.24

The sampled origin-destination pair gives the home location as well as the “chosen” alter-25
native for a synthetic person. In principle the individual’s choice set contains all the parks in our26
dataset; in practice it can be difficult to estimate choice models with so many alternatives (|J|= 500).27
For this reason we randomly sample 10 additional parks to serve as the non-chosen alternatives28
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for our synthetic choice maker. Such random sampling of alternatives reduces the efficiency of1
the estimated coefficients but the coefficients remain unbiased (Train, 2009). As the model has no2
alternative-specific constants, the standard likelihood comparison statistic against the market shares3
model ρ2 is not computable. We instead use the likelihood comparison against the equal shares4
model ρ2

0 .5
The resulting analysis dataset therefore contains 2×104 choice makers that select between6

11 parks including the park they were observed to choose; the measured distance between the choice7
maker’s block group and all parks in the choice set; and the acreage of each park in the choice set.8
We hold out a random sample of approximately 20% of choice makers for validation purposes. We9
use the mlogit package for R (Croissant, 2019; R Core Team, 2019) to estimate the multinomial10
logit models.11

RESULTS12
We estimated multinomial logit park destination choice models including coefficients for the13
distance between the park and the home block group and the acreage of the park. We applied a14
Yeo-Johnson transformation (Yeo and Johnson, 2000) to both distance and acreage; the Yeo-Johnson15
transformation replicates the constant marginal elasticity of a logarithmic transformation while16
avoiding undefined values (Y J(0) = 0). For efficiency and clarity, we call this transformation log()17
in the model results tables. Using a constant marginal elasticity is better reflective of how people18
perceive distances and sizes; a one-mile increase to a trip distance is more impactful to a one-mile19
trip than a ten-mile trip.20

The results of several estimated models are given in Table 3. The first model — labeled “All”21
— uses no segmentation and includes the entire estimation sample. The coefficients have rational22
directionality: the negative coefficient on distance implies that individuals choose parks closer to23
their home locations, and the positive coefficient on acres implies that individuals choose larger24
parks, all else equal. The ratio of the distance to size coefficients is 0.21, implying that individuals25
in this model are willing to travel 4.74 times further to access a park twice as large, all else equal.26

The next two models compare models estimated on segments of the estimation sample,27
where one segment includes block groups where the share of Black or African American and28
“Other” ethnic group (Native American and Pacific Islander, mostly) individuals exceeds 30% of the29
population. The “Non-Minority” segment includes the balance of block groups. The difference in30
the estimated coefficients is striking. For block groups with a high share of minority individuals,31
the distance coefficient is substantially larger and the acreage coefficient is substantially smaller32
than for the complementary segment. This suggests that minority individuals may be less likely to33
travel further, or be more willing to choose a smaller park, than other individuals.34

The final set of three models segments the data based on the share of housheolds at different35
income levels in the estimation dataset. The “High Income” segment includes block groups where36
more than 50% of households report an income greater than $125,000 per year; the “Low Income”37
segment includes block groups where more than 30% of households report an income less than38
$35,000 per year, and the “Other Income” segment includes the remainder. In this case, each39
segment has a signficant and substantive difference in their perception of park acreage, with the40
high-income segment most interested in seeking out large parks. Curiously, the low-income segment41
also has a higher sensitivity than the remainder segment to larger parks. The distance coefficient42
shows a somewhat similar pattern, with the low- and high- income groups more similar to each43
other (and in this case statistically indistinguishable) than to the remainder group, though in this44
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FIGURE 1 Normalized park accessibility logsum values.

case the remainder group is more sensitive to distance.1
Figure 1 shows the normalized value of the destination choice logsum using the unsegmented2

model for each block group in Alameda county. According to this measure, the best access is found3
in the mountains east of Hayward, where there are large mountain parks nearby. The center of4
Oakland also sees good relative park access, with underdeveloped areas in the south and east of the5
county having the least access.6

Validation7
We applied each of the six models (or three models with six total market segments) to the validation8
holdout sample to examine the predictiveness of the estimated coefficients. The table below shows9
for each model and segment the total number of “correct” predictions, meaning that the alternative10
with the highest estimated probability was also the observed choice. The table also shows the mean11
estimated probability of the observed choice. The results indicate that a model predicting the park12
choice of residents in high-income neighborhoods is the most likely to result in correct predictions,13
and residents of low-income neighborhoods are the least predictable. The other model/segments all14
predict about half of the individuals in their segments correctly.15

Figure 2 shows a comparison of the trip length frequency distribution for the observed and16
predicted choice of the individuals in the holdout sample. As in the numerical analysis of prediction17
accuracy, the high-income segment shows the best replication of the actual distance traveled; the18
models for all other segments — perhaps especially low-income and minority neighborhoods —19
seem to show a tendency to over-predict the utility of nearby parks at the expense of parks in the 3-20
to 7- mile range.21

LIMITATIONS AND FUTURE DIRECTIONS22
The ideal dataset for estimating individual choices would be a high-quality, large-sample household23
travel survey of real individuals. Such a survey would give details on whether an observed trip24
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TABLE 4 Model Validation
Model Segment %Correct Mean Prob. of Chosen

All All 50.77 0.36
Minority Non-minority N’hood 51.56 0.37
Minority Minority N’hood 48.53 0.33
Income Low Income 43.89 0.31
Income Other Income 50.25 0.36

Income High Income 57.12 0.44

to a park was actually a recreation trip or rather a different activity entirely. The individual-level1
demographic data would also be valuable in understanding more clearly the observed heterogeneity2
in response among different income or ethnic groups. Additionally, the trends and correlations3
revealed in the presented models may reflect situational inequalities rather than true preferences.4
For example, the strongly distinct observed parameters on size and distance for minority block5
groups may indicate that areas with large minority populations tend to have smaller parks that are6
more geographically distributed relative to other regions of the city. Transit access may also affect7
park choice and how far people are willing to travel to access a park. Preliminary analysis of our8
source data indicates a qualitative correlation between good transit access and diverse park use from9
both a geographic and demographic perspective.10

We limited our analysis to home locations and parks in Alameda County, California. It is11
possible that some Alameda residents visit parks in neighboring counties, just as it is possible that12
parks in Alameda County attract trips from outside the county borders. This is most likely for block13
groups and parks on the north and south borders of the county. The lower measured accessibility in14
the area around Berkeley in the northern part of the county (see Figure 1 is likely affected by the15
ommission of parks and residents in Contra Costa County.16

Using Euclidean distance to represent the distance between the block group centroid and17
the border of the park leaves something to be desired: Depending on network topography and built18
environment characteristics, there may be a significant variation in perceived travel times between19
two parks with similar straight-line distances. That said, a more precise network-based measure20
might not overcome the inaccuracies resulting from our necessarily measuring distances from the21
block group centroid. As above, an individual-level survey where the home location is explicitly22
known would be preferable regardless of the distance method employed.23

The activity location data used in this specific analysis treats all days of the week and day24
periods together; it is likely that weekend park choice is substantially different from weekday choice,25
as the activities performed may be the same. Also recall that the data consider each device-park pair26
as a unique trip. Repeated trips to the same park may not be properly considered in the data sample.27
A more precise time-of-day and day-of-week segmentation is warranted.28

We applied a naive random sampling of the alternatives in our model estimation and29
validation; a more considered approach involving hierarchical destination sampling would yield30
more efficient estimates and therefore a clearer picture of the role of size and distance on the31
observed choice. The relatively weak predictive power of such a simple model formulation (size32
and distance only) indicates that there is potential to examine the role that additional park amenities33
— ball fields, playgrounds, water features, etc. — play in the relative attractiveness of parks for34
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different market segments. The quality of park maintenance is another important feature identified in1
the recreation literature (Fletcher and Fletcher, 2003) that is not included here. That said, forecasting2
the presence or quality of some of these amenities may be infeasible when considering future travel3
patterns.4

CONCLUSIONS5
As transportation professionals seek to improve access to parks and better coordinate transportation6
and land use efforts, it is increasingly important to better understand how, when, and why individuals7
travel to parks. This intersection between recreation and transportation has received relatively little8
exploration, partially because travel survey data emphasizes weekday travel and because the role of9
parks in daily activities can be more complicated than with other land uses. This study contributes to10
the understanding of recreation access by presenting a method to develop access measures explicitly11
based on the observed choices of individuals. The resulting access measure is continuously defined12
and incorporates multiple dimensions of access, including the travel necessary to reach all nearby13
parks as well as the amenities of each of those parks. Further, the measure we have presented reveals14
heterogeneous preferences for travel and park size across market segments, a heterogeneity that15
could perhaps be incorporated into an understanding of accessibility.16

With the growing availability of passive transportation data, there is a correspondingly17
increased opportunity to explore such data to develop a better understanding of travel patterns18
in more careful detail than is possible with household travel surveys. Capturing a sufficiently19
large survey to study trip patterns to a single park is an enormous undertaking, and doing such an20
exercise for an entire park system is prohibitively expensive and time-consuming. Passive data sets21



Macfarlane and Tapia 13

therefore enable analyses that would be unlikely or impossible by other means. Challenges to the1
representativeness and comprehensiveness of passive data products are in many cases fair, but this2
should not preclude their use in cases where traditional techniques are not practicable.3
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